Synthesis of fused quinoxalines

Michail G. Ponizovsky,^a Artem M. Boguslavsky,^a Mikhail I. Kodess,^b Valery N. Charushin*^a and Oleg N. Chupakhin^b

^a Department of Organic Chemistry, Urals State Technical University, 620002 Ekaterinburg, Russian Federation. Fax: +7 3432 74 5191; e-mail: charushin@prm.uran.ru

^b Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, 620219 Ekaterinburg, Russian Federation

10.1070/MC2002v012n02ABEH001560

The intramolecular cyclization of NH and N-alkyl quaternary salts of 2-quinoxaline-2-carboxaldehyde hydrazones affords pyrazolo-[3,4-b]quinoxalines in good yields.

The idea to use tandem nucleophilic addition reactions at two neighbouring C=N bonds of an azine ring for construction of condensed aza heterocycles has been successfully applied to pyrazines and their aza and benzo analogues. ^{1–5} Indeed, the *ortho*-cyclization of 1-alkyl-1,4-diazinium salts with bifunctional nucleophiles is an efficient synthetic approach to condensed pyrazines, quinoxalines, pyrido[2,3-*b*]pyrazines and pteridines in which the pyrazine ring is fused with five- and six-membered heterocycles (Scheme 1).^{1,2}

$$\begin{bmatrix} X \\ Y \\ Y \\ R \end{bmatrix} + \begin{bmatrix} HX \\ HY \end{bmatrix} \longrightarrow \begin{bmatrix} H \\ Y \\ R \end{bmatrix} \begin{bmatrix} H \\ Y \\ R \end{bmatrix} \begin{bmatrix} X \\ Y \\ R \end{bmatrix}$$

Scheme 1

Another approach to condensed aza heterocycles is based on a nucleophilic reaction at the C=N bond of an azine ring in combination with a nucleophilic attack at the *exo*-cyclic electrophilic centre (Scheme 2). This approach was illustrated by the reaction of 6-carbonyl-substituted 1,2,4-triazines with hydrazines.⁶ In this paper, we report on a new methodology for the synthesis of fused quinoxalines from quinoxaline-2-carboxaldehyde.

Scheme 2

Attempts to perform a cyclization reaction between quinoxaline-2-carboxaldehyde and hydrazines without activation of the quinoxaline moiety were unsuccessful. We also failed to obtain N-alkyl quaternary salts by reacting quinoxaline-2-carboxaldehyde with methyl iodide or triethyloxonium tetrafluoroborate (the Meerwein reagent). Therefore, it was suggested to obtain fused quinoxalines in two steps: (i) condensation of quinoxaline-2-carboxaldehyde with hydrazines resulting in corresponding hydrazones 1a-g; (ii) quarternization of quinoxalines 1a-g with methyl iodide followed by an intramolecular nucleophilic attack of NH of the side-chain hydrazone moiety at the activated C=N bond of the pyrazinium cation (Scheme 3).

Hydrazones **1a–g** prepared according to standard procedures[†] were subjected to N-alkylation with methyl iodide. It was expected that both nitrogen atoms of the pyrazine ring, N-1 and N-4, might be alkylated with methyl iodide. Indeed, the quaternization[‡] of quinoxaline-2-carboxaldehyde *N,N*-dimethylhydrazone **1a** (a model compound incapable of a further intramolecular cyclization) gave a mixture of two quaternary salts **2a** and **3a** in

[†] A common synthetic procedure for quinoxalin-2-carboxaldehyde hydrazones **1a–g**. A solution of 1.0 g (6.2 mmol) of quinoxaline-2-carboxaldehyde in 15 ml of ethanol was added gradually to a solution of 6.2 mmol of hydrazine (or hydrazine hydrochloride) in 10 ml of water for 3–5 min with stirring at 60–70 °C. After stirring for additional 3–5 min, the reaction mixture was cooled to room temperature to give a hydrazone precipitate, which was filtered off and recrystallised.

1a: 66% (from water), mp 78–79 °C. ¹H NMR ([²H₆]DMSO) δ: 3.18 (s, 6H, NMe₂), 7.33 (s, 1H, CH=N), 7.6–7.8 (m, 2H, H-6, H-7), 7.9–8.0 (m, 2H, H-5, H-8), 9.28 (s, 1H, H-3). ¹³C NMR ([²H₆]DMSO) δ: 41.90 (qq, Me, ¹ $J_{\rm C,H}$ 137.0 Hz, ³ $J_{\rm C,Me}$ 3.03 Hz), 126.95 (dm, CH=N, ¹ $J_{\rm C,H}$ 166.0 Hz), 127.94, 128.51, 129.66 (m, C-5, C-6, C-7, C-8), 140.09 (ddd, C-4a, ³ $J_{\rm C,CH}$ 10.6 Hz, ³ $J_{\rm C,CH}$ 10.3 Hz, ² $J_{\rm C,CH}$ 5.4 Hz), 141.37 (dd, C-8a, ³ $J_{\rm C,CH}$ 9.0 Hz, ² $J_{\rm C,CH}$ 5.8 Hz), 142.56 (dd, C-3, ¹ $J_{\rm C,H}$ 185.0 Hz, ³ $J_{\rm C,CH}$ 3.5 Hz), 153.33 (dd, C-2, ² $J_{\rm C,CH}$ 9.4 Hz, ² $J_{\rm C,CH}$ 6.2 Hz). Found (%): C, 51.9; H, 4.2; N, 30.0. Calc. for C₁₁H₁₂N₄ (%): C, 51.95; H, 3.89; N, 30.28.

1b: 75% (from aqueous ethanol), mp 210–212 °C. ¹H NMR ([²H₆]DMSO) δ : 6.85–7.35 (m, 5H, Ph), 7.70–7.90 (m, 2H, H-6, H-7), 7.90–8.10 (m, 2H, H-5, H-8), 8.01 (s, 1H, CH=N), 9.51 (s, 1H, H-3), 11.91 (s, 1H, NH). ¹³C NMR ([²H₆]DMSO) δ : 112.78 (d, C-3′, ¹ $J_{\rm C,H}$ 160.6 Hz), 120.32 (dm, C-5′, ¹ $J_{\rm C,H}$ 160.7 Hz, ³ $J_{\rm C,CH}$ 7.4 Hz), 128.36, 128.74, 128.94 and 130.14 (C-5, C-6, C-7, C-8), 129.13 (ddd, C-4′, ¹ $J_{\rm C,H}$ 158.9 Hz, ³ $J_{\rm C,CH}$ 8.0 Hz, ² $J_{\rm C,CH}$ 1.7 Hz), 134.38 (dd, CH=N, ¹ $J_{\rm C,H}$ 166.4 Hz, ³ $J_{\rm C,CH}$ 3.7 Hz), 140.64 (ddd, C-4a, ³ $J_{\rm C,CH-3}$ 9.4, ² $J_{\rm C,CH-6}$ 5.8 Hz, ³ $J_{\rm C,CH-5}$ 5.8 Hz), 141.37 (dd, C-8a, ³ $J_{\rm C,CH-7}$ 8.7 Hz, ² $J_{\rm C,CH-8}$ 5.7 Hz), 142.90 (dd, C-3, ¹ $J_{\rm C,H}$ 186.3 Hz, ³ $J_{\rm C,CH-4}$ 0 Hz), 143.91 (m, C-1′), 149.68 (dd, C-2, ² $J_{\rm C,CH}$ 9.4 Hz, ² $J_{\rm C,CH-6}$ 6.6 Hz). Found (%): C, 72.5; H, 4.7; N, 22.5. Calc. for C₁₅H₁₂N₄ (%): C, 72.56; H, 4.87; N, 22.57.

1c: 75% (from aqueous ethanol), mp 220–221 °C. ^1H NMR ([$^2\text{H}_6$]DMSO) δ : 2.37 (s, 3H, Me), 7.04–7.22 (m, 4H, $p\text{-}\text{C}_6\text{H}_4$), 7.60–7.81 (m, 2H, H-6, H-7), 7.88–8.01 (m, 2H, H-5, H-8), 7.92 (s, 1H, CH=N), 9.45 (s, 1H, H-3), 11.09 (s, 1H, NH). Found (%): C, 73.5; H, 5.1; N, 21.1. Calc. for $C_{16}H_{14}N_4$ (%): C, 73.26; H, 5.38; N, 21.36.

1d: 87% (from acetic acid), mp 338–340 °C. 1 H NMR ($[^{2}$ H₆]DMSO) δ : 3.30–4.60 (br. s, 1H, COOH), 7.30 (d, 2H, H-2', H-6'), 7.72–7.87 (m, 2H, H-6, H-7), 7.80 (d, 2H, H-3', H-5'), 7.98–8.11 (m, 2H, H-5, H-8), 8.10 (s, 1H, CH=N), 9.50 (s, 1H, H-3), 11.5 (s, 1H, NH). Found (%): C, 65.8; H, 4.1; N, 19.1. Calc. for $C_{16}H_{12}N_4O_2$ (%): C, 65.70; H, 4.14; N, 19.17.

1e: 63% (from acetic acid), mp 255–256 °C. 1H NMR ([2H_6]DMSO) δ : 7.35 (d, 2H, H-2′, H-6′), 7.76–7.89 (m, 2H, H-6, H-7), 8.00–8.12 (m, 2H, H-5, H-8), 8.16 (d, 2H, H-3′, H-5′), 8.20 (s, 1H, CH=N), 9.50 (s, 1H, H-3), 11.80 (s, 1H, NH). Found (%): C, 61.3; H, 3.7; N, 23.7. Calc. for $C_{15}H_{11}N_5O_2$ (%): C, 61.43; H, 3.78; N, 23.88.

1f: 70% (from aqueous ethanol), mp 96–98 °C. 1 H NMR ([2 H₆]DMSO) δ : 3.00 (d, 3H, NMe), 7.40 (s, 1H, H-3), 7.58–7.75 (m, 2H, H-6, H-7), 7.81–8.99 (m, 2H, H-5, H-8), 8.40 (d, 1H, NH), 9.20 (s, 1H, CH=N). Found (%): C, 64.8; H, 5.2; N, 29.6. Calc. for $C_{10}H_{10}N_4$ (%): C, 64.50; H, 5.41; N, 30.09.

1g: 72% (from aqueous ethanol), mp 91–92 °C. ^1H NMR ([$^2\text{H}_6$]DMSO) δ : 4.50 (d, 2H, CH₂Ph), 7.20–7.40 (m, 5H, Ph), 7.60 (s, 1H, H-3), 7.65–7.79 (m, 2H, H-6, H-7), 7.87–8.02 (m, 2H, H-5, H-8), 8.90 (t, 1H, NH), 9.20 (s, 1H, CH=N). Found (%): C, 73.1; H, 5.4; N, 20.9. Calc. for $C_{16}H_{14}N_4$ (%): C, 73.26; H, 5.38; N, 21.36.

the ratio 4:1 (¹H NMR data).

The quaternization of quinoxalines 1b,c with methyl iodide in DMSO proceeds more selectively to result in the formation of $N_{(4)}$ -quaternary salts 2b,c. Salts 2b,c undergo a spontaneous intramolecular nucleophilic attack leading to σ^H -adducts 4a,b followed by their oxidation into pyrazolo[3,4-b]quinoxalines 5b,c. This two-step reaction can be regarded as intramolecular nucleophilic substitution of hydrogen (S_1^H). Indeed, the elimination of hydrogen is facilitated by atmospheric oxygen, as it takes place in many other S_1^H reactions. In case of phenylhydrazones 1d,e bearing electron-withdrawing groups (COOH, NO_2) at the *para*-position, the nucleophilic character of NH of the hydrazone moiety is insufficient to cause the S_1^H process; therefore, only the N_4 -methylation reaction takes place affording quaternary salts 2d,e (Scheme 5).

Evidence for the structure of pyrazoloquinoxalines **5b,c** is provided by ¹H and ¹³C NMR data.§ The X-ray diffraction analysis of compound **5b** revealed that the pyrazoloquinoxaline system is planar and the methyl group is attached to the quaternary

* Quaternization of quinoxalin-2-carboxaldehyde phenylhydrazones 1a—e with methyl iodide. A solution of the corresponding quinoxalin-2-carboxaldehyde phenylhydrazone (2 mmol) in 2 ml of DMSO and 2 ml of methyl iodide was heated in water bath at 40–50 °C and refluxed for 3 h. The precipitate obtained after cooling the reaction mixture to room temperature was filtered off, washed with diethyl ether, dried in air and recrystallised to give either quinoxalinium salts 2d,e or pyrazolo[3,4-b]-quinoxalinium salts 5b,c. Attempts to isolate individual salts 2a and 3a derived from quaternization of quinoxaline 1a with methyl iodide by recrystallization were unsuccessful.

2d: 65% (from AcOH–DMSO), mp 360–362 °C. ^1H NMR ([$^2\text{H}_6$]DMSO) δ : 4.0 (br. s, 1H, COOH), 4.70 (s, 3H, N+Me), 7.48 (d, 2H) and 7.93 (d, 2H, $p\text{-}C_6\text{H}_4$), 8.11–8.59 (m, 4H, H-5, H-6, H-7, H-8), 8.23 (s, 1H, CH=N), 10.0 (s, 1H, H-3), 11.98 (s, 1H, NH). Found (%): C, 46.7; H, 3.4; N, 12.6. Calc. for $C_{17}\text{H}_{15}\text{N}_4\text{O}_2\text{I}$ (%): C, 47.02; H, 3.47; N, 12.90.

2e: 67% (from AcOH–DMSO), mp 314–315 °C. ¹H NMR ([²H₆]DMSO) δ : 4.79 (s, 3H, N*Me) 7.56 (d, 2H, H-2', H-6'), 8.16–8.28 (m, 2H, H-3', H-5'), 8.16–8.59 (m, 4H, H-5, H-6, H-7, H-8), 8.31 (s, 1H, CH=N), 10.13 (s, 1H, H-2), 12.26 (s, 1H, NH). ¹³C NMR ([²H₆]DMSO) δ : 45.60 (dd, N*Me, ¹ $J_{\rm CH}$ 146.1 Hz, $^3J_{\rm CCH}$ 4.6 Hz), 113.25 (ddd, C-2', C-6', ¹ $J_{\rm CH}$ 166.4 Hz, $^3J_{\rm CCH}$ 5.7 Hz, $^2J_{\rm CCH}$ 2.4 Hz), 119.53, 133.79, 134.03 and 136.79 (C-5, C-6, C-7, C-8), 125.83 (dd, C-3', C-5', ¹ $J_{\rm CH}$ 167.6 Hz, $^3J_{\rm CCH}$ 4.6 Hz), 129.73 (m, C-8a), 130.15 (dd, CH=N, ¹ $J_{\rm CH}$ 171.3 Hz, $^3J_{\rm CCH}$ 5.1 Hz), 141.16 (dm, C-2, ¹ $J_{\rm CH}$ 197.7 Hz), 140.73 (tt, C-4', ² $J_{\rm CH}$ 9.6 Hz, $^3J_{\rm CCH}$ 3.4 Hz), 144.01 (m, C-4a), 148.82 (m, C-1'), 151.46 (dd, C-3, ³ $J_{\rm CCH}$ 7.5 Hz, ² $J_{\rm CCH}$ 4.3 Hz). Found (%): C, 44.1; H, 3.3; N, 16,4. Calc. for C $_{\rm 16}H_{\rm 14}N_5O_2$ I (%): C, 44.16; H, 3.24; N, 16.09.

\$ 5b: 62% (from water), mp 206–208 °C. $^1\mathrm{H}$ NMR ([$^2\mathrm{H}_6$]DMSO) δ : 4.19 (s, 3H, N+Me), 7.70–7.88 (m, 5H, Ph), 8.20–8.78 (m, 4H, H-5, H-6, H-7, H-8), 9.61 (s, 1H, CH=N). $^{13}\mathrm{C}$ NMR ([$^2\mathrm{H}_6$]DMSO) δ : 38.65 (q, N+Me, $^1J_{\mathrm{CH}}$ 146.3 Hz), 117.77, 130.32, 132.59 and 137.83 (C-5, C-6, C-7, C-8), 127.86 (dm, $^1J_{\mathrm{CH}}$ 166.1, C-2', C-6'), 129.7 (m, C-8a), 130.06 (ddd, C-3', C-5', $^1J_{\mathrm{CH}}$ 165.4 Hz, $^3J_{\mathrm{CCH}}$ 6.1 Hz, $^2J_{\mathrm{CCH}}$ 3.1 Hz), 131.26 (dm, C-4', $^1J_{\mathrm{CH}}$ 163.5 Hz, $^3J_{\mathrm{CCH}}$ 7.2 Hz), 132.97 (m, C-9a), 137.59 (m, C-1'), 140.31 (dd, C-4a, $^2J_{\mathrm{CCH}}$ 5.4 Hz, $^3J_{\mathrm{CCH}}$ 9.7 Hz), 140.34 (d, C-3, $^1J_{\mathrm{CH}}$ 204.8 Hz), 145.79 (d, C-3a, $^2J_{\mathrm{CCH}}$ 1.10 Hz). Found (%): C, 49.4; H, 3.4; N, 14.2. Calc. for $\mathrm{C}_{16}\mathrm{H}_{14}\mathrm{N}_4\mathrm{I}$ (%): C, 49.38; H, 3.62; N, 14.20.

5c: 71% (from water), mp 304–305 °C. ¹H NMR ([²H₆]DMSO) δ : 1.83–1.92 (m, 3H, MePh), 4.18 (s, 3H, N+Me), 7.58 (d, 2H), and 7.74 (d, 2H, p-C₆H₄), 8.17–8.78 (m, 4H, H-5, H-6, H-7, H-8), 9.6 (s, 1H, CH=N). Found (%): C, 50.8; H, 3.5; N, 14.0. Calc. for C₁₇H₁₅N₄I (%): C, 50.77; H, 3.76; N, 13.93.

nitrogen, while the phenyl group is not coplanar with the tricyclic system due to hindrance caused by the N-methyl substituent (Figure 1). \P

In N-alkyl-substituted quinoxalin-2-carboxaldehyde hydrazones **1f**,**g** the nucleophilic character of NH is enhanced, and the intramolecular reaction can be carried out on reflux in aqueous ethanol in the presence of a few drops of sulfuric acid to afford

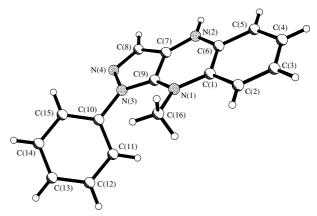


Figure 1 Molecular structure of pyrazolo[3,4-b]quinoxalinium iodide 5b.

¶ Crystallographic data for **5b**: crystals of C₁₆H₁₃N₄I are monoclinic at 293 K, space group Cc, a = 6.689(3), b = 33.689(15), c = 7.224(3) Å, $\beta = 112.416(10)^{\circ}, V = 1504.9(12) \text{ Å}^{3}, Z = 4, M = 389.21, d_{\text{calc}} = 1.713 \text{ g cm}^{-3},$ $\mu(\text{MoK}\alpha) = 2.126 \text{ cm}^{-1}$, F(000) = 760. Intensities of 3863 reflections were measured with a Smart 1000 CCD diffractometer at 293 K [λ (MoK α) = = 0.71072 Å, ω -scans, $2\theta < 62^{\circ}$], and 2476 independent reflections ($R_{\rm int}$ = = 0.0260) were used in further refinement. The absorption correction was carried out semiempirically from equivalents. The structure was solved by the heavy atom method and refined by the full-matrix leastsquares technique against F^2 in the anisotropic-isotropic approximation. The positions of the hydrogen atoms were calculated geometrically and refined in a ridding model. The refinement converged to $wR_2 = 0.0899$ and GOF = 0.984 for all independent reflections [$R_1 = 0.0395$ was calculated against F for 1912 observed reflections with $I > 2\sigma(I)$]. All calculations were performed using SHELXTL PLUS 5.0. Atomic coordinates, bond lengths, bond angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details, see 'Notice to Authors', Mendeleev Commun., Issue 1, 2002. Any request to the CCDC for data should quote the full literature citation and the reference number 1135/106.

pyrazolo[3,4-*b*]quinoxalines **6a,b** in good yields (Scheme 6).†† In this case, the pyrazine ring is activated by N-protonation; indeed, no reaction was observed without an acid.

†† Intramolecular cyclization of quinoxalin-2-carboxaldehyde alkylhydrazones **1f.g** into pyrazolo[3,4-b]quinoxalines **6a.b**. A few drops of sulfuric acid were added to a solution of quinoxalin-2-carboxaldehyde alkylhydrazone (2 mmol) in 10 ml of ethanol and 10 ml of water to adjust pH 2, and the reaction mixture was refluxed for 4 h. The precipitate obtained after cooling and neutralization of the reaction mixture was filtered off and recrystallised to give pyrazolo[3,4-b]quinoxalines **6a,b**.

6a: 75% (from aqueous ethanol), mp 129–130 °C. ¹H NMR ([²H₆]DMSO) δ : 4.18 (s, 3 H, NH*Me*), 7.80 (tm, 2 H), 7.91 (tm, 2 H, H-6, H-7), 8.11 and 8.20 (2dd, 2×2 H, H-5, H-8), 8.66 (s, 1 H, CH=N). ¹³C NMR ([²H₆]DMSO) δ : 33.76 (q, Me, ¹J_{CH} 140.4 Hz), 127.55, 128.05, 129.65 and 130.64 (C-5, C-6, C-7, C-8), 132.71 (d, C-3, ¹J_{CH} 197.0 Hz), 136.34 (d, C-3a, ¹J_{CH} 10.11 Hz), 140.33 (ddd, C-4a, 1J_{CH} 9.88 Hz, ²J_{C,CH} 5.52 Hz, ²J_{C,CH} 1.23 Hz), 140.61 (dd, C-8a, ¹J_{CH} 10.11 Hz, ²J_{C,CH} 5.52 Hz), 141.45 (m, C-9a). Found (%): C, 65.3; H, 4.5; N, 30.4. Calc. for C₁₀H₈N₄ (%): C, 65.21; H, 4.38; N, 30.42.

6b: 80% (from aqueous ethanol), mp 113–114 °C. ^1H NMR ([$^2\text{H}_6$]DMSO) δ : 5.80 (s, 2 H, CH $_2$ Ph), 7.25–7.35 (m, 5 H, Ph), 7.80–8.00 (m, 2 H, H-6, H-7), 8.15–8.31 (m, 2 H, H-5, H-8), 8.82 (s, 1H, CH=N). Found (%): C, 73.7; H, 4.3; N, 21.2. Calc. for C $_{16}\text{H}_{12}\text{N}_4$ (%): C, 73.83; H, 4.65; N, 21.52.

Although several approaches to the synthesis of pyrazolo-[3,4-b]quinoxalines have been described in the literature, $^{8-10}$ we believe that the above two-steps procedure involving condensation of the carbonyl group ring with hydrazines (to introduce a nucleophilic fragment into a side-chain of pyrazines) followed by intramolecular S_N^H reaction at the activated C=N bond is a promising methodology for the synthesis of fused 1,4-diazines.

This work was supported by the US Civilian Research and Development Foundation (award no. REC-005) and the Russian Foundation for Basic Research (grant no. 01-03-96456a).

References

- V. N. Charushin, O. N. Chupakhin and H. C. van der Plas, Adv. Heterocycl. Chem., 1988, 43, 301.
- V. N. Charushin, G. A. Mokrushina, G. M. Petrova, G. G. Alexandrov and O. N. Chupakhin, *Mendeleev Commun.*, 1998, 133.
- 3 V. N. Charushin, S. G. Alexeev, O. N. Chupakhin and H. C. van der Plas, Adv. Heterocycl. Chem., 1989, 46, 73.
- 4 O. N. Chupakhin, B. V. Rudakov, S. G. Alexeev and V. N. Charushin, Heterocycles, 1992, 33, 931.
- 5 O. N. Chupakhin, G. L. Rusinov, D. G. Beresnev, V. N. Charushin and H. Neunhoeffer, J. Heterocycl. Chem., 2001, 38, 901.
- A. Rykowski, M. Mojzych and Z. Karczmarzyk, Heterocycles, 2000, 53.
- 7 O. N. Chupakhin, V. N. Charushin and H. C. van der Plas, Nucleophilic Aromatic Substitution of Hydrogen, Academic Press, New York, 1994.
- P. Madhavan Pillai and P. Ramabhadran, *Indian J. Chem.*, 1986, 25B, 901.
- M. von Saltza, J. D. Dutcher, J. Reid and O. Wintersteiner, J. Org. Chem., 1963, 28, 999.
- 10 G. Henseke and C. Bauer, Chem. Ber., 1959, 92, 509.

Received: 28th January 2002; Com. 02/1886